Search results for "posterior predictive"
showing 6 items of 6 documents
Bayesian classification for dating archaeological sites via projectile points
2021
Dating is a key element for archaeologists. We propose a Bayesian approach to provide chronology to sites that have neither radiocarbon dating nor clear stratigraphy and whose only information comes from lithic arrowheads. This classifier is based on the Dirichlet-multinomial inferential process and posterior predictive distributions. The procedure is applied to predict the period of a set of undated sites located in the east of the Iberian Peninsula during the IVth and IIIrd millennium cal. BC.
Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model
2018
[EN] We present a Bayesian stochastic susceptible-exposed-infectious-recovered model in discrete time to understand chickenpox transmission in the Valencian Community, Spain. During the last decades, different strategies have been introduced in the routine immunization program in order to reduce the impact of this disease, which remains a public health's great concern. Under this scenario, a model capable of explaining closely the dynamics of chickenpox under the different vaccination strategies is of utter importance to assess their effectiveness. The proposed model takes into account both heterogeneous mixing of individuals in the population and the inherent stochasticity in the transmiss…
A Bayesian SIRS model for the analysis of respiratory syncytial virus in the region of Valencia, Spain
2014
We present a Bayesian stochastic susceptible-infected-recovered-susceptible (SIRS) model in discrete time to understand respiratory syncytial virus dynamics in the region of Valencia, Spain. A SIRS model based on ordinary differential equations has also been proposed to describe RSV dynamics in the region of Valencia. However, this continuous-time deterministic model is not suitable when the initial number of infected individuals is small. Stochastic epidemic models based on a probability of disease transmission provide a more natural description of the spread of infectious diseases. In addition, by allowing the transmission rate to vary stochastically over time, the proposed model provides…
Gaussian Process Sensitivity Analysis for Oceanic Chlorophyll Estimation
2017
Source at https://doi.org/10.1109/JSTARS.2016.2641583. Gaussian process regression (GPR) has experienced tremendous success in biophysical parameter retrieval in the past years. The GPR provides a full posterior predictive distribution so one can derive mean and variance predictive estimates, i.e., point-wise predictions and associated confidence intervals. GPR typically uses translation invariant covariances that make the prediction function very flexible and nonlinear. This, however, makes the relative relevance of the input features hardly accessible, unlike in linear prediction models. In this paper, we introduce the sensitivity analysis of the GPR predictive mean and variance functions…
Inference and prediction in bulk arrival queues and queues with service in stages
1998
This paper deals with the statistical analysis from a Bayesian point of view, of bulk arrival queues where the batch size is considered as a fixed constant. The focus is on prediction of the usual measures of performance of the system in the steady state. The probability generating function of the posterior predictive distribution of the number of customers in the system and the Laplace transform of the posterior predictive distribution of the waiting time in the system are obtained. Numerical inversion of these transforms is considered. Inference and prediction of its equivalent single queue with service in stages is also discussed.
Bayesian Checking of the Second Levels of Hierarchical Models
2007
Hierarchical models are increasingly used in many applications. Along with this increased use comes a desire to investigate whether the model is compatible with the observed data. Bayesian methods are well suited to eliminate the many (nuisance) parameters in these complicated models; in this paper we investigate Bayesian methods for model checking. Since we contemplate model checking as a preliminary, exploratory analysis, we concentrate on objective Bayesian methods in which careful specification of an informative prior distribution is avoided. Numerous examples are given and different proposals are investigated and critically compared.